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Prediction of failure modes in 
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In short-fibre reinforced composites, penny-shaped cracks often initiate from fibre-ends 
and propagate into the matrix until they are arrested by the neighbouring fibres. A 
theoretical study on the prediction of failure modes after the arrest, that is, either the 
penetration of the crack into the fibres or the debonding of the matrix-fibre interface, 
is performed. The analytical method used in this study is the extension of the two- 
dimensional model of Kendall to the three-dimensional crack problem. Strain energy 
release rates for the initiation of the cracks of the penetration and debonding types are 
calculated. Also computed are the total potential energy required for a complete pene- 
tration of the crack through the fibre diameter and a complete debonding of the matrix- 
fibre interface. Based on these computations, the failure modes of the crack arrested by 
the neighbouring fibres are discussed. 

1. Introduction 
It has been reported [1, 2] that in a short-fibre 
reinforced composite microcracks can initiate at 
fibre-ends at a strain level lower than the failure 
strain of the pure matrix material and propagate 
into the matrix under increasing applied load 
until they are arrested by the neighbouring fibres. 
The cracks so initiated seem to grow as penny- 
shaped cracks with their crack planes perpen- 
dicular to the applied load. The stiffness and 
strength of aligned short-fibre reinforced com- 
posites containing fibre-end cracks, before they 
are arrested by the neighbouring fibres, have 
recently been investigated by Taya and Mura [3], 
and Takao et aL [4]. 

When the penny-shaped crack is arrested by 
the fibres at a right-angle in aligned short-fibre 
composites, an important question arises as to the 
direction of further propagation of the crack: the 
crack will either penetrate into the fibre along 
the existing crack plane or cause debonding of 
the matrix-fibre interface. The answer to this 
question is difficult, if not impossible, to obtain 

due to the three-dimensional problem, researchers 
have often focused their attention on the crack-tip 
stress singularity. The works of Bogy [5] and 
Comninou [6] are typical in this approach. How- 
ever, neither the energy release rate nor the 
critical applied stress has been treated for the 
case of a crack meeting an interface. To our 
knowledge, under only very restricted conditions, 
Sanchez-Moya and Pipkin [7] computed the 
energy release rate of a two-dimensional crack 
meeting an interface at a right-angle. The assump- 
tions they made are the incompressibility of the 
composite, the inextensibility of the fibre and 
the infinite aspect ratio of the fibre. They termed 
such a combination of fibre and matrix an "ideal 
composite". Based upon these assumptions, the 
energy release rate for the initiation of a crack, 
which would penetrate into the fibre, was 
obtained, but the energy required for the crack to 
fracture a fibre could not be estimated. 

As to the problem of matrix-fibre interracial 
debonding, a number of attempts (for example, 
[8, 9]) have been made to theoretically predict 
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and to experimentally measure the energy for 
debonding. In the work of Kelly [9], the predic- 
tion of the fracture energy for debonding of the 
interface, 3% is based on the assumption that the 
interface is broken by the interfacial shear stress. 
The value of 7i thus obtained depends on the fibre 
diameter, the fracture stress and Young's modulus 
of  the fibre. However, the experiment for deter- 
mining "gi was carried out using fibres of  diameters 
larger than that used in the usual short-fibre re- 
inforced composites and, thus, the measured value 
of 7i may not necessarily represent those of the 
practical systems. It should also be noted that 
the criterion for interfacial debonding discussed 
in [8, 9] is given in such a manner that the 
applied stress does not play any role in affecting 
debonding. 

Williams and Reifsnider [10] examined both 
theoretically and experimentally the occurrence 
of failure modes, including debonding, delami- 
nations and fibre breakage, in composite materials, 
using the strain energy release rate method. How- 
ever, their models were different from the case of 
debonding and fibre breakage caused by a crack 
meeting an interface, as examined in this paper. 

Kendall [11, 12] has developed a simple two- 
dimensional analysis by which the behaviour of a 
crack meeting an interface at a right-angle can be 
predicted. He has also proposed several exper- 
imental methods to measure the fracture energies, 
7, of  a homogeneous material and the interface of 
a two-phase material. The value of 7 so obtained 
agrees well with that measured by the conventional 
fracture mechanics type of test. The experimental 
method of Kendall was originally developed for a 
rubber-matrix composite and its applicability to 
other types of composites remains to be justified. 
Nevertheless, the model of Kendall has the merit 
of simplicity in calculation, and the applicability 
to cracks of complex geometry. 

We extend Kendall's model to the three- 
dimensional crack problem in short-fibre reinforced 
composites where a penny-shaped crack originated 
at a fibre end and is arrested by the neighbouring 
fibres. Then the modes of crack propagation, 
namely, the penetration of the crack into a fibre 
and the debonding of the interface, will be 
discnssed. Numerical calculations are performed 
for a graphite short-fibre reinforced epoxy. The 
crack model and formulation are given in Section 2, 
and the results and discussions are in Section 3. 
The conclusions will be given in Section 4. 

2. Modelling and formulation 
In order to simulate the situation of a crack 
meeting the neighbouring fibres in the composites, 
a simple model is constructed, as shown in Fig. 1. 
The infinite body contains a penny-shaped crack 
arrested by two neighbouring short fibres, and is 
subjected to the uniaxial applied stress, Cro. The 
length and the diameter of the fibre are l and c2, 

respectively, and the radius of the penny-shaped 
crack is c l .  The thickness of the crack is assumed 
to be infinitesimal. It is noted, in passing, that the 
following approach will be valid for the case of 
three or more neighbouring fibres. The cases of  
the penny-shaped crack penetrating through the 
fibre, and the debonding of the interface are 
discussed in Sections 2.1 and 2.2, respectively. 

2.1. Penetration 
In this section, the problem that a penny-shaped 
crack penetrates two neighbouring fibres is 

Cro 

---•C2 
/ /  
/ /  
/ /  

/ /  p e n n y - s h a p e d  

/ /  c r o c k  / /  
/ /  

/ - /  
/ /  
/ J  

n / /  

I / / ~  2 C I b [_ "" / . /  

L . Z  

T  c2F- 
~ " f i  br 

,i 

, A 

r . ,  A 

J 

% 

Figure 1 A penny-shaped crack arrested by two neigh- 
bouring short-fibres in an infinite body subjected to the 
uniaxial applied stress. 
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Figure 2 (a) A penny-shaped crack that has penetrated two fibres completely and has become a larger concentric crack 
of radius cl + c2. (b) Conversion of the circular cross-section of the fibre to a fan-shaped section. (c) Further conver- 
sion to a rectangular section that has the same area, S, as the circular one. 

modelled and, using the model, the method is 
formulated for obtaining the applied stress required 
for the crack penetration. Fig. 2a shows the cross- 
section of the penny-shaped crack that has pene- 
trated two fibres completely and has become a 
larger crack of radius cl + c2, concentric with the 
original crack. In Figs 1 and 2a the fibre at the 
end of which the penny-shaped crack has initiated 
is omitted. In order to obtain the applied stress 
required for the crack to penetrate the fibres, the 
strain energy release rate at the initiation of the 
penetration and the difference between the total 
potential energy before the penetration (Fig. 1) 
and that after the penetration (Fig. 2a) are 
considered. 

In general, a fibre has a circular section. How- 
ever, for convenience sake, it is assumed for the 
present that the fibre has a fan-shaped section. 
The area, S, shown in Fig: 2b, is the same as the 
circular section of the fibre, shown in Fig. 2a. The 
fan-shaped section is defined by the angle, 0, 
which is a function of volume fraction, Ve, of 
fibres. By adopting the definition of Vf given in 
[1], the relationship between Ve and 0 is given as 

2 (1) 

For example, when V~ = 0.5, 0 = 0.45 (26~ and 
when V~ = 0.3, 0 = 0.37 (21~ Since the angle is 
not very large, the fan-shaped section may be 
further converted to a rectangular section that 
also has the same sectional area, S, as shown in 
Fig. 2c. Finally, the plain-strain problem will be 
considered involving the rectangular section of 
fibres (Fig. 3). Fig. 3a shows that a two-dimensional 
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crack just meets the fibres and Fig. 3b shows that 
the crack penetrates the fibres completely. 

The difference of the total potential energy 
between the stage of Fig. 3a and the stage of 
Fig. 3b is denoted by AUf for the fibre and by 
bUm for the matrix. In case of the matrix, the 
opening angle shown in Fig. 2b is 27r -- 20. Then, 
the difference of the total potential energy 
between the case that the penny-shaped crack 
meets the two fibres (Fig. 1) and the case that the 
crack penetrates the fibres completely (Fig. 2a) 
is given by 

2. 1.1. Init iat ion o f  ponotrot ion crock 
At first, the initiation of the penetration crack will 
be considered, as shown in Fig. 3a. The strain 
energy release rate, Rpi , for the initiation of the 
penetration crack is given by Kendall [12] as 

7r(1 -- vZ)el (ex + c2)2Ef og, (3) 
Rpi = (elE m + e2Ef)2 

where Ef and Era are the Young's moduli of the 
fibre and matrix, respectively, and v m is the matrix 
Poisson's ratio. Equation 3 can be modified to 

Rpl _ (1 + c)2E 

(o~Tr(1 - - v ~ ) c l ) / E  m (1 + cE) 2 = 31, (4) 

where c = c:/cl and E = Ef/E m . 31 in Equation 4 
is the non-dimensional strain energy release rate. 
The variation of 31 is plotted in Fig. 4 as a func- 
tion of e2/cl for several values of the parameter E. 
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Figure 3 Plain-strain problem 
involving the rectangular cross- 
section of fibres. (a) Two- 
dimensional crack just touching 
the fibres; (b) the crack has 
completely penetrated into the 
fibres. 

(a) (b) 

The strain energy release rate, Rpi, is also related 
to the surface energy of the fibre material, 7~, as 

R p i  = 2"yr. (5) 

Then, using Equations 4 and 5, we can easily get 
the applied stress, Oo(-Ool) required for the 
initiation of the penetrating crack 

27rE m 111/2 
oo, = ~ ( 1  --.~m)C, ~, /  (6) 

It should be noted, however, that the strain energy 
release rate is computed for the model shown in 
Fig. 3a, and therefore is an approximation of the 
strain energy release rate for the initiation of the 
penetrating crack shown in Fig. 1. 

2. 1.2. Propagation of the penetrating crack 
In order to obtain the difference in the total 
potential energy between for the configuration of 
Fig. 3a and b, the strain energy release rate for the 
propagation of the two-dimensional crack in the 
fibre region is formulated. When the crack tip is 
located in the fibre region, the fibre is divided 
into two regions, namely, cracked fibre region of 
width, c (c is the crack length in the fibre) and un- 
cracked one of width c2 - -c .  

We assume the isostrain deformation of the 
system under uniaxial applied load. The average 
Young's modulus, /7, and the average applied 
stress, 6, of the cracked fibre region and the 
matrix region are 

_ ClEm + cEf 
C 1 + C (7) 

and 

C 1 a m + COl 
o - , ( 8 )  

c l + c  

where am and af are the applied stresses in the 
matrix and the fibre, respectively. Thus, the 
problem that the crack tip is located in the fibre 
region can be modified to a two-phase composite 
problem consisting of the uncracked fibre and the 
cracked region that has the average Young's 
modulus, E, and the average applied stress, O. 

From the concept of a modified Griffith 
criterion by Kendall [ 12], 

(9) Of ~r(1 - v~)(c~ + c)}  
and 

0 = 7r(1 --/)2m)(C 1 +c)Ef] ' (10) 

where Rpp is the strain energy release rate. Then, 
the average applied stress 0o(=0o2) can be 
obtained as 

(c~ + c)O + r - c )o f  
ao2 = (11) 

Cl + C  2 

Substituting Equations 9 and 10 into Equation 1 l ,  
we have 

rr(1 -- V2m)(Cl + c2)2(cx + c)Ee 
R p p  = (C lErn  + c 2 E f ) 2  022. 

02) 
The difference between the total potential energies 
of Fig. 3a and b can be regarded as the integration 
of the strain energy release rate as the crack pene- 
trates through the fibre: 
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Figure 4 Non-dimensional strain 
energy release rate, fll =Rpi/ 
r r ( 1 -  2 = Vm)Clao,/E m, for the 
initiation of a penetration crack. 
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AU~ = ecja, Rpp dc, (13) 

where a ~ 0. a = 0, namely, the initiation of the 
penetration crack is not included in Equation 13. 
Substituting Equation 12 into Equation 13, we 
obtain 

Pro)c1 [32Cr2o2, (14) A U g - I t ( I -  2 2 

Em 
where 

C2 
( l + c )  2 c + - -  E 

2 
~2 = (1 + cE) 2 (15) 

The variation of/32 is plotted as a function of c 
for several values of E in Fig. 5. In the case of 
Em = E~, from Equations 1 2 and 13, the difference 
of the total potential energy, AUra, is 

- -  Pro)el ~3 O2 , (16) AUra -- rr(1 2 2 
Em 

836 

where 
C2 

t3a = c + - - .  (17) 
2 

The surface energies of the fibre and the matrix, 
~,e and 7m, respectively, are related to the poten- 
tial energy difference as 

C2 
23'fSf = AUf(cl +--~ (20) (18) 

and 

= AUra e l +  2 (21r--20), (19) 2"YmS m 

where Se is the sectional area of the fibres, Se = 2S, 
and Sm is the sectional area of the matrix, S m =  
rr {(cx + c2) 2 -  c~ }- -Sf .  The sum of S~ and Sm is 
the area swept by the penny-shaped crack during 
the crack penetration. Finally, using Equations 2, 
14, 16, 18, and 19, we obtain the applied stress, 
Ooz, for the penny-shaped crack penetrating the 
fibres completely as 



(27fS~ + 2TmSm)E m )1/2. 

%= = rr(2c1 + c2){(1 -- v~)~zO + (1 -- v2m)/3a(rr-- O)}c~ 
(2o) 

2.2. Debonding of the interface 
In this section, the case where a penny-shaped 
crack propagates along the cylindrical interface 
between the fibres and matrix, i.e., the debonding 
of the interface, is considered. The theoretical 
model assumes that after having touched two 
neighbouring fibres, the penny-shaped crack 
expands concentrically without cutting these 
fibres, as shown in Fig. 6a, and then, the crack 
propagates along the interface of fibres, as shown 
in Fig. 6b. Also, in this section are derived the 
applied stresses, %,  required for the initiation of 
debonding crack (Ooa) and for the complete 
debonding of the interface (0o4) over the total 
length of fibre. 

2.2.  1. I n i t i a t i o n  o f  d e b o n d i n g  c rack  
We consider a cylindrical region with radius of 
c1 + cz and height, l, including two fibres as 
shown in Fig. 6b. The strain in the debonded 
fibre region is denoted by e2 in Fig. 6b. Else- 
where, the strain is assumed to have the uniform 
value of e~. A consideration of static equilibrium 
leads to 

(191 + C2) 2 0 0 

em (c, + c~) ~ - + Ef c~ (21) 
2 

and 

2(ca + c2) 2 o0 
e2 = Efc~ ' (22) 

where Oo is the average applied stress over the 
fibre and matrix areas. 

Next, the total potential energy change due to 
the initiation.of the debonding crack is considered. 
The total energy change is obtained from the 
changes in the surface energy and strain energy, as 
well as from the work done by the applied force. 
The surface energy change can be obtained as 

dU1 = 47rc2z2XXRDi , (23) 

where ~x is the infinitesimal length of the 
debonded region and RDi is the interface fracture 
energy. R D i  c a n  also be considered as the strain 
energy release rate for the initiation of debonding, 
because the fracture energy is supplied by the 
release of the strain energy upon crack initiation. 
It is assumed that there is no change of strain in 
the matrix region of height 2Ax while the strain 
in the fibre region of height 2Ax, changes from 
el to e2. Then, the strain energy change in the 
fibre region denoted by Ax is 

dU2 1 2 = ~Ef(e 2 -- e~)Trc~Ax. (24) 

The work done by the applied force is 

dU3 = 2~01r(cl + c2)2(e~ - el)Ax. (25) 
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Figure 5 Non-dimensional paIameter, t3~ = 
A Uffir(1 2 2 2 --vm)eloo2/Em, related to the 
fracture energy for the crack completely 
penetrating into the fibres. 
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Figure 6 (a) The concentric propagation of a penny-shaped crack without cutting fibres; (b) The initiation of debonding 
of matrix-fibre interface by a penny-shaped crack propagated concentrically without cutting the fibres: 

Since the net energy change is zero, 

dgl  + dU2 -- dU3 = 0. (26) 

A substitution of Equations 21 to 25 into 
Equation 26 yields 

02Ci 
RDi = ~""--~4, (27) 

where 

{(1 +c) 2 --~-}= (1 +c) 4 

3 T E 

and/34 is the non-dimensional strain energy release 
rate for the initiation of the debonding crack, f14 is 
plotted as a function of c2/Cl in Fig. 7 for several 
values orE.  

The strain energy release rate, Ri, is related to 
the interface fracture energy 3'i as 

RDi = "YI- (29) 

Then, using Equations 27 to 29, the applied stress 
(ao-=ao3) required for the initiation of the 
debonding crack can be easily obtained 

= ( 7I-~-gm 1)  1/2 . (30) 
~ c, L 

where 

2.2.2. Propagation o f  debonding crack 
The propagation of the debonding crack along the 
interface is depicted in Fig. 8. Unlike the case of 
the initiation of the debonding crack, there is a 
change of strain in the matrix region of thickness 
Axx when the crack propagates a distance ~x. 
Since the matrix strain in the debonded region 
(AACC and BBCC in Fig. 8) vanishes, the strain 
change is from el to zero. Then, the strain energy 
change in the matrix region of thickness ~xx is 

dU~=--Erne~Tr {(cl +c2)  2 - - ~ ]  ~x.  (31) 

The other energy changes are the same as those 
described in the case of initiation. 

Substituting Equations 23 to 25 and 31 into 
Equation 26, we obtain the strain energy release 
rate, R Dp, for the propagation of debonding as 

02Cl 
RDp = E m  /3s, (32) 

~s = (33) 2c3{(l+c)2+(E--1)c-~}E 
and/35 is the non-dimensional strain energy release 
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Figure 8 The propagation of the 
debonding crack along the 
matrix-fibre interface. 
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Figure 9 Non-dimensional strain energy 
release rate, #s =RDp/elo~4/Em, for the 
propagation of debonding crack along the 
matrix-fibre interface. 

rate./~s is plotted as a function ofc2[cl,  in Fig. 9 
for several values of E. 

It is assumed that the strain energy release rate, 
RDp, remains constant during the propagation of 
the debonding crack to the fibre end. Then, the 
total strain energy change from the initiation of 
the debonding crack to the complete debonding of 
the fibre lateral surface is given by 

A U  D = 2RDpl / rc2 .  (34) 

AUD = 21rrc27i. 

Then, from Equations 19 and 35, 

(35) 

AUD + AUra = 217rc2"7i + 27mSm. (36) 

Finally, the appfied stress o04 required for the 
penny-shaped crack debonding the whole lateral 
surface of the fibre is obtained from Equations 16, 
32 and 34 to 36, such that 

(21rrc29'i + 2")'mSm)Em 11/2 
Oo4 = 2c,lTrc2~s ; - ~ 1  ~ - v ~ m ) ~  -~c2)(rr--O)~3 ] " (37) 

Therefore, the difference in the total potential 
energy between the initial stage that a penny- 
shaped crack just meets the fibres and the final 
stage that the debonding crack propagates to the 
fibre end becomes AUD + 2xU~. Here, 2xU~n is 
the change in the total potential energy from the 
time when the penny-shaped crack just meets the 
neighbouring fibres to that when the crack 
expands to surround the fibres, as shown in Fig. 
6a. Using the same model as used in Section 2.1.2, 
AU" is found to be AUm(2Cl + c2)(rr -- 0). Also, 
2xUD is related to the interfacial fracture energy 
~'i such that 

3. Results and discussion 
3.1. Comparison with the result of an 

ideal composite 
Sanchez-Moya and Pipkin [7] computed the strain 
energy release rate for a two-dimensional crack 
meeting the interface at a right-angle. The model 
used by Sanchez-Moya and Pipkin is called the 
"ideal composite model" and is based on the 
assumption that the fibre diameter, c2, is infini- 
tesimal and the fibre stiffness is infinite. Hence, 
the result of an ideal composite, which is plotted 
as a filled circle in Fig. 4, should correspond to 
the asymptotic value as c2/cl and E(=Ef/Em) 
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approach to 0 and co, respectively. Indeed, this is 
so as seen from Fig. 4. 

3 .2 .  C o m p u t a t i o n  o f  Ool,  002, ao3 a nd  004 
In order to estimate the critical applied stresses 
necessary for the breakage of  fibres and the 
debonding of  the interface by a penny-shaped 
crack, the following material properties o f  a 
graphite fibre-reinforced composite are used: for 
the epoxy, E m = 3.5 x 1 0  9 N m  -2, v m = 0.4 and 
%,, = 3 3 0 J m - 2 ;  for the graphite fibre, E f =  2 x 
1011Nm -2, v~=0 .17  and 7 ~ = 7 5 J m - 2 1 1 3 ] .  
It is also assumed that e 2 = 0 . 0 0 7 m m  and 
l = 0 . 3 5 m m .  By adopting the fibre volume- 
fraction of  V~ = 0.2, c2/ex = c = 0.289. In order 
to estimate the applied stress, it is necessary to 
know the data o f  the interfacial fracture energy, 
7i. Murphy and Outwater [8] and Kelly [9] 
performed fibre pull-out tests for measuring 7z. 
Using the above data, 7i is calculated, based upon 
their model and it is found that 7i = 3.73 J m -2. 
The fibre fracture strength of  of = 1.6 x 1 0  9 N m  -~ 
[13] has been used in this calculation. Kendall 
[14], also, carried out peel tests for obtaining data 
of  the interface fracture energy. His value for 
the interface between polyethylene and silica is 
about 1 J m -2, and is comparable to our calcu- 
lated value, which will be used to estimate the 
applied stresses o03 and 004 for debonding of  the 
interface (Case 1). 

However, the method of  measurements of  7i 
has not been well established. Moreover, the value 
of  7I is generally sensitive to the fibre surface 
treatment. Therefore, simply as a demonstration 
of  the effect of  3'i on the debonding criteria, we 
also use the value 71 = 2 5 0 J m - z  (Case 2). This 
value is of  the same order as the values tabulated 
in [9] for other composite materials. 

First, by the use o f  the 7i value in Case 1, the 
above data o f  material properties, and Equations 
6, 20, 30 and 37, the applied stresses, Ool, 002, 

003 and 004 are calculated as follows: 

aol = 163MNm -2; 

002 = 177MNm-2 ;  

003 = 5 7 M N m  - z ; a n d  

0o4 = l l 0 M N m  -2. 

As far as stresses are concerned, the failure mode 
most likely to occur is the one which requires the 
lower applied stress. According to the above 

results, in both cases of  initiation (Ool > Ooa) and 
propagation (ao2 >Oo4), interface debonding is 
the dominant failure mode. 

Next, in Case 2 o f  7i, the applied stresses for 
the initiation and propagation of  the debonding 
are estimated, respectively, as follows: 

0o3 = 475 MNm -2 ; and 

0o4 = 2 6 3 M N m  -2. 

Comparing these values with the results of  Oo~ 
and 0o2 in Case 1, we conclude that penetration 
is more likely to occur than debonding. These 
results have demonstrated that the failure mode 
is sensitive to the value o f  7i. 

4. Conclusions 
A theoretical study of  the failure mode of  a penny- 
shaped crack meeting adjacent fibres at a right- 
angle in a short-fibre reinforced composite has 
been attempted. The results in the present study 
have led us to the following conclusions: 

(a) For given material data of  a short graphite 
fibre composite, the debonding of  the interface 
is dominant failure mode when the value o f  71 
is small. For the larger value of  71, however, the 
penetration of  the meeting crack is more likely to 
occur. Thus the failure mode is highly sensitive 
to the interfacial fracture energy, 7i. 

(b) The Kendall model, after it is extended to 
a three-dimensional case, has proved to be a very 
powerful method in the fracture analysis of  
composites. 

(c) The experimental method to measure the 
interfacial fracture energy, 7i, must be well 
established. 
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